148 research outputs found

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    Modular Multi-level Converter Hardware-in-the-Loop Simulation on low-cost System-on-Chip devices

    Get PDF
    ComunicaciĂł presentada a IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society (October 21-23, 2018 Washington D.C., USA.)System-on-Chip (SoC) devices combine powerful general purpose processors, a Field-Programmable Gate Array (FPGA) and other peripherals which make them very convenient for Hardware-in-the-Loop (HIL) simulation. One of the limitations of these devices is that control engineers are not particularly familiarized with FPGA programming, which need extensive expertise in order to code these highly sophisticated algorithms using Hardware Description Languages (HDL). Notwithstanding, there exist High-Level Synthesis (HLS) tools which allow to program these devices using more generic programming languages such as C, C++ and SystemC. This paper evaluates SoC devices to implement a Modular Multi-Level Converter (MMC) model using HLS tools for being implemented in the FPGA fabric in order to perform HIL verification of control algorithms in a single low-cost device

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    Industrial applications of the Kalman filter:a review

    Get PDF
    International audienc

    Représentations Systèmes Multi-Machines (SMM) de machines polyphasées

    Get PDF
    Cet article présente le principe de décomposition de machines polyphasées en machines fictives monophasée et diphasées non couplées magnétiquement. Après la description de la méthodologie de décomposition SMM (Systèmes Multimachines Multiconvertisseurs), deux cas sont étudiés. Une machine synchrone pentaphasée, est d'abord analysée avec son modèle de machines équivalentes. Un second cas plus original est ensuite étudié : deux machines pentaphasées connectées en série et alimentées par un onduleur 5 bras.This paper presents the equivalence of multi-phase machines with a set a of 1-phase and 2-phase machines with no magnetic couplings. Two cases are then studied. First, a 5-phase machine supplied by a Voltage Source Inverter(VSI) is analyzed. Then, a model is established for a single 5-leg VSI supplying two 5-phase machines whose windings are connected in series

    Industrial Electronics Society Awards 2019 [Society News]

    No full text

    The 28th IEEE International Symposium on Industrial Electronics [Society News]

    No full text

    IEEE Industrial Electronics Society Members Elevated to IEEE Fellows [Society News]

    No full text

    The 15th IEEE International Workshop on Factory Communication Systems [Society News]

    No full text

    Prof. Mo-Yuen Chow Delivered a Distinguished Lecture at Chuo University, Japan, 26 February 2019 [Society News]

    No full text
    • …
    corecore